Modality-Agnostic Variational Compression of Implicit Neural Representations

Schwarz^{1,2}, Tack³, Teh¹, Lee⁴, Shin³

¹ Deepmind, ² University College London, ³ KAIST, ⁴ POSTECH

ML Reading Group, 08.02.2023

Presentation Structure

- Why strive for modality-agnostic compression algorithms?
- A refresher on implicit neural representations
- Using implicit neural representations for compression
- Improving implicit neural representations for compression
 - Improved conditioning
 - Improved compression
- Experiments
 - Effectiveness of improved conditioning
 - Effectiveness of improved compression
- Conclusion

Why strive for modality-agnostic compression algorithms?

- Currently, custom compression techniques for each modality
 E.g. MP3 for audio, JPEG for images, HEVC for video, and so on
- Each carefully introduce inductive biases that help in the respective modality
- This limits the transfer of algorithmic ideas between these techniques
- Sometimes, scientists need to collect data for which no generally accepted compression technique may even be available

Paradigm shift:

Make modality agnosticism a key guiding principle

 \rightarrow research advancements are now more widely applicable

A refresher on implicit neural representations

- Interpret data as functions from coordinates to features
 - $\circ \quad \ \ \mathsf{E.g.} \ (x,y) \to (r,g,b) \ \text{for images}$
- Parameterize these functions with neural networks, e.g. functa [Functa]
- INRs are inherently modality agnostic
 - Always applicable if data can be expressed as a coordinate to feature mapping
 - Obviously the case for image, voxels, scene, climate, audio and video datasets
 - Side note: extensions also exist for e.g. graphs [GeneralizedINRs]
- In the end, a data point is encoded within the weights of a neural network
 - How to store those weights efficiently?
 - \rightarrow Previous works propose e.g. quantizing the weights
 - *Data*-compression becomes *model*-compression

Using implicit neural representations for compression

- Reminders:
 - An INR is a function $f(\cdot; \theta): C \rightarrow Y$
 - Can be optimized using the mean-squared error: $\min_{\boldsymbol{\theta}} \sum_{i=1}^{m} \|f(\mathbf{c}_{j}; \boldsymbol{\theta}) \mathbf{y}_{j}\|_{2}^{2}.$
 - Bad idea to do separately per datapoint
 - We instead use data-item specific parameters ϕ^i that are used to specialize a shared INR $f(\cdot; \theta)$ that captures structure across the dataset. θ is typically much larger than the ϕ^i
- How to condition/specialize the f on the ϕ ?
 - Commonly: layer-wise modulations, i.e. $\phi^i = [s^{(1)}, \dots, s^{(L)}]$
 - $\circ \quad \mathbf{c}^{(l-1)} \mapsto h(\mathbf{W}^{(l)}\mathbf{c}^{(l-1)} + \mathbf{b}^{(l)} + \mathbf{s}^{(l)})$
- Reducing the size of ϕ^i further: Two common options
 - Predict the $s = [s^{(1)}, \dots, s^{(L)}]$ from ϕ^i using shared weights, i.e. $\mathbf{s} = \mathbf{W}' \phi + \mathbf{b}'$ [Functa]
 - But: hard to train, so far limited to linear mappings \rightarrow lack of representational capacity
 - Prune dimensions in ϕ^i through sparsity [MSCN]
 - But: requires approximate inference, introduces additional complexity&hyperparameters

Improving implicit neural representations for compression

- INR-based compression can be improved with a two-fold approach:
 (i) Improved conditioning : Try to achieve high signal reconstruction pre-quantization
 (ii) Improved compression: Better quantization techniques
- These are orthogonal algorithmic considerations
 - (i) increases the upper-bound of performance we can hope to achieve after quantisation
 - (ii) reduces the gap between that upper-bound and the actual final performance
- Improved conditioning:
 - Recent approaches use either sparsity or latent coding for small representations
 - They propose a middle ground
 - Learns more efficiently, and also
 - Provides better reconstructions at equal capacity
- Improved compression:
 - Introduce a *learned* compressor
 - It is trained on the latent representations of the training dataset items
 - Can then be applied on unseen latent representation to compress them

Improved conditioning: INR specialisation through subnetwork selection

- Combine both ideas of sparsity and parametric predictions
 - Sparsity, but without hard gating. This alleviates the need for approximate inference
 - Parametric predictions can concentrate capacity on non-sparse entries of s
- Propose a non-linear prediction network that maps a ϕ^i to one $\mathbf{G}_{1ow}^{(l)}$ per layer
- $G_{low}^{(l)}$ is a low-rank soft gating mask, same shape as weights of layer l
- One layer now applies the following function:

 $\begin{array}{c} \text{SIREN} \quad \text{elementwise mult.} \\ \mathbf{c}^{(l-1)} \mapsto \sin(\omega_0(\mathbf{G}_{1\text{ow}}^{(l)} \odot \mathbf{W}^{(l)} \mathbf{c}^{(l-1)} + \mathbf{b}^{(l)})) \\ \downarrow \\ \text{ectivations} \\ \text{of previous} \\ \text{of grevious} \\ \text{of grevious$

Improved conditioning: INR specialisation through subnetwork selection

- $\mathbf{c}^{(l-1)} \mapsto \sin(\omega_0(\mathbf{G}_{low}^{(l)} \odot \mathbf{W}^{(l)} \mathbf{c}^{(l-1)} + \mathbf{b}^{(l)}))$ $\mathbf{G}_{low}^{(l)} := \sigma(\mathbf{U}^{(l)} \mathbf{V}^{(l)\top}), \ \mathbf{U}^{(l)}, \mathbf{V}^{(l)} \in \mathbb{R}^{m \times d} \text{ with } d \ll m.$
- Similar to previous techniques, $\mathbf{U}^{(l)}, \mathbf{V}^{(l)}$ are not directly the entries of ϕ^i
- Instead, they are the output of a deep residual network with input ϕ^i \rightarrow Its parameters are part of θ

(a) Non-linear projection from ϕ to $\mathbf{G}_{low}^{(l)}$ sub-network gates.

Improved conditioning: INR specialisation through subnetwork selection

- The whole thing is optimized using model-agnostic Meta Learning [MAML]
- How to compress a new (unseen) test datapoint? $= \underbrace{\xi}_{j \in \mathcal{A}} \| \underbrace{\xi}_{(c_j; \theta_j; \theta_j)} \underbrace{\xi}_{j \in \mathcal{A}} \| \underbrace{\xi}_{(c_j; \theta_j; \theta_j)} \underbrace{\xi}_{(j \in \mathcal{A})} \| \underbrace{\xi}_{(c_j; \theta_j; \theta_j)} \underbrace{\xi}_{(c_j; \theta_j; \theta_j)} \| \underbrace{\xi}_{(c_j; \theta_j)} \| \underbrace{\xi}_{(c_j;$
- Key idea of MAML: backpropagate through this optimisation process \rightarrow Thereby we learn an initialization ϕ_0 and the global parameters θ
- We thus optimize $\min_{\boldsymbol{\theta}, \boldsymbol{\phi}_0} \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\mathcal{L}_{INR} \left(\boldsymbol{\theta}, \boldsymbol{\phi}_0 \alpha \nabla_{\boldsymbol{\phi}_0} \mathcal{L}_{INR} \left(\boldsymbol{\theta}, \boldsymbol{\phi}_0, \mathbf{x} \right), \mathbf{x} \right) \right]$ (outer loop)
- Additionally, they also meta-learn the step-size α, as in Meta-SGD^[MetaSGD]
- Drawbacks: requires a lot of memory (due to 2nd order gradients)
 - Thus they need to use patches for large data. E.g. they only compress 32x32 blocks of pixels
 - There are 1st order methods, but previous work found they severely hinder performance

Improved compression: Variational compression of modulations

- They adapt the method in "End-to-end optimized image compression" [End2End]
 - That method was devised for image data, does not make use of INRs
 - Learns to encode images as a code with low rate and good reconstructions after quantization
 - Basically, it's a variational autoencoder under a specific generative and inference model
- But.. we want model-agnosticity!
 - \circ The authors apply this same method, not to learn to compress inputs, but the modulations ϕ^i

0

- \circ $\hfill The results are quantised discrete codes that can be stored by e.g. Huffmann coding$
- The optimized compression loss is a weighted sum of rate and distortion

$$\begin{array}{l} \circ \quad \mathcal{L}_{\text{compress}}(\pi_{a},\pi_{s},\mathbf{x},\phi) = \mathcal{L}_{\text{rate}} + \lambda \mathcal{L}_{\text{distortion}} \stackrel{\text{analysis}}{\underset{\text{random}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{code}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{code}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{code}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{code}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{code}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{france}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{france}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{france}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{france}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{france}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{france}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{france}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{france}}{\text{france}}} \stackrel{\text{encoder}}{\underset{\text{france}}{\text{france}}} \stackrel{\text{france}}{\underset{\text{france}}{\text{france}}} \stackrel{\text{france}}{\underset{\text{france}}{\underset{\text{france}}{\text{france}}}} \stackrel{\text{france}}{\underset{\text{f$$

Experimental results Effectiveness of improved conditioning

Experiments: Effectiveness of advanced conditioning

Dataset	Model	Performance @ dim(ϕ)							2.002
		64	128	256	512	1024		PSNR	MSE
		10.0	10 -	10.0	11.0			50	1.00E-05
ERA5 $(4\times)$	Functa	43.2	43.7	43.8	44.0	44.1		40	1.00E-04
	MSCN	44.6	45.7	46.0	46.6	46.9		30	1.00E-03
	VC-INR	45.0	46.2	47.6	49.0	50.0		20	1.00E-02
CelebA-HQ	Functa MSCN VC-INR	21.6 21.8 22.0	23.5 23.8 23.9	25.6 25.7 26.0	28.0 28.1 28.3	30.7 30.9 30.8	4 J	Aetric: F	SNR:
SRN Cars	Functa MSCN VC-INR	22.4 22.8 23.9	23.0 24.0 24.0	23.1 24.3 24.3	23.2 24.5 25.2	23.1 24.8 25.5		-10 · lo	g10 (USE)
ShapeNet10	Functa MSCN VC-INR	99.30 99.43 99 .54	99.40 99.50 99 .61	99.44 99.56 99 .64	99.50 99.63 99 .70	99.55 99.69 99 .71	Z Met	ric: Voxe	l Accuracy

Model: 15 layers of 512 neurons each

Experiments: Effectiveness of advanced conditioning

• Is the usage of a non-linear mapping from ϕ^i to the modulations useful?

(a) Learning curves

Experiments: Effectiveness of advanced conditioning

• Does the mask G_{1ow} condition the shared INR on image statistics?

(c) Mask clustering on CelebA-HQ

Experimental results Effectiveness of improved compression

Experiments: Data compression across modalities: Images

bpp=

16

(CIFAR-10)

Experiments: Data compression across modalities: Manifold

bpp =

Experiments: Data compression across modalities: Audio

18

Experiments: Data compression across modalities: Video

bpp =

Conclusion

- The authors introduce VC-INR, a modality-agnostic neural compression technique
- They make modality-agnosticity a key guiding principle
- They propose algorithmic improvements across both conditioning and compression
- For improving conditioning, they combine ideas from latent modulation and sparsity
- For improving compression, they apply a previous neural compression method to the modulations
- They sometimes even outperform modality-specific codecs such as JPEG and MP3

Thank you for listening :-)

References I

- [VC-INR] <u>Modality-Agnostic Variational Compression of Implicit Neural</u> <u>Representations</u>
- [Functa] From data to functa: Your data point is a function and you can treat it like one
- [GeneralizedINRs] <u>Generalised Implicit Neural Representations</u>
- [MSCN] <u>Meta-Learning Sparse Compression Networks</u>
- [SIREN] Implicit Neural Representations with Periodic Activation Functions
- [MAML] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
- [MetaSGD] Meta-sgd: Learning to learn quickly for few-shot learning
- [Coin++] <u>COIN++: Neural Compression Across Modalities</u>
- [End2End] <u>End-to-end optimized image compression</u>

Algorithm 1 INR Meta-training stage

Data: Dataset $\{\mathbf{x}^i, \mathbf{y}^i\}_{i=1}^N$

1 Initialise shared network θ and latent modulation initialisation ϕ_0 .

2 while not converged do

Sample batch of data $\mathcal{B} = {\{\mathbf{x}^j, \mathbf{y}^j\}}_{i=1}^B$ 3 // Adaptation loop (\mathcal{O} in Figure 1c) for $j \leftarrow 1$ to B do 4 $egin{aligned} & \end{aligned} & \end{aligne$ 5 // Update using adapted latent modulation $\phi_0 \leftarrow \phi_0 - \beta \mathbb{E}[\nabla_{\phi_0} \mathcal{L}_{\text{MSE}}(f(\mathbf{x}^j, \boldsymbol{\theta}, \boldsymbol{\phi}^j), \mathbf{y}^j)]$ 6 // Remaining INR parameters $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \beta \mathbb{E}[\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{MSE}}(f(\mathbf{x}^j, \boldsymbol{\theta}, \boldsymbol{\phi}^j), \mathbf{y}^j)]$ 7

Result: Dataset of latent modulations $\{\phi^i\}_{i=1}^N, \theta$

Algorithm 2 Quantisation training stage

Data: Dataset of latent modulations $\{\phi^i\}_{i=1}^N, \theta, \lambda$ 8 while not converged do Initialise parameters π_a, π_s . 9 Sample batch of data $\mathcal{B} = {\{\phi^j, \mathbf{x}^j, \mathbf{y}^j\}}_{j=1}^B$ for $j \leftarrow 1$ to B do $\mathbf{z} \leftarrow g_a(\boldsymbol{\phi}^j; \boldsymbol{\pi}_a)$ 10 // Rounding at inference to obtain $\hat{\mathbf{z}}^j$ $\widetilde{\mathbf{z}}^j = \mathbf{z}^j + \boldsymbol{\epsilon}; \boldsymbol{\epsilon} \sim \mathcal{U}(-\frac{1}{2}, \frac{1}{2})$ 11 // Compute entropy model $p_{\hat{f z}}$ and rate $\ell_{\mathtt{rate}}^{j} = -\log_2[p_{\hat{\mathbf{z}}}(\widetilde{\mathbf{z}})]$ 12
$$\begin{split} \widetilde{\boldsymbol{\phi}}^{j} &\leftarrow g_{s}(\widetilde{\mathbf{z}}^{j}; \boldsymbol{\pi}_{s}) \\ \ell^{j}_{\texttt{distortion}} &= \mathcal{L}_{\texttt{MSE}}(f(\mathbf{x}^{j}, \boldsymbol{\theta}, \widetilde{\boldsymbol{\phi}}^{j}), \mathbf{y}^{j}) \end{split}$$
 $\begin{aligned} \pi_a &\leftarrow \pi_a - \beta \mathbb{E}[\nabla_{\pi_a}(\ell_{\texttt{rate}}^j + \lambda \ell_{\texttt{distortion}}^j)] \\ \pi_s &\leftarrow \pi_s - \beta \mathbb{E}[\nabla_{\pi_s}(\ell_{\texttt{rate}}^j + \lambda \ell_{\texttt{distortion}}^j)] \end{aligned}$ 13

24

COIN++

- Modulations: $\sin(\omega_0(W\mathbf{h} + \mathbf{b} + \boldsymbol{\beta}))$
 - Uses latent modulation with a **linear** transform
- Also meta-learns with MAML
- No compression of the latent modulation vector
- For quantisation, simply uses a uniform quantisation
- Then also applies entropy coding to store losslessly