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Why strive for modality-agnostic compression algorithms?

e Currently, custom compression techniques for each modality
o E.g. MP3 for audio, JPEG for images, HEVC for video, and so on

e Each carefully introduce inductive biases that help in the respective modality

e This limits the transfer of algorithmic ideas between these techniques

e Sometimes, scientists need to collect data for which no generally accepted
compression technique may even be available

Paradigm shift:
Make modality agnosticism a key guiding principle
— research advancements are now more widely applicable




A refresher on implicit neural representations

e Interpret data as functions from coordinates to features
o E.g. (x,y) — (r,g,b) forimages
e Parameterize these functions with neural networks, e.g. functa Functal

e INRs are inherently modality agnostic
o Always applicable if data can be expressed as a coordinate to feature mapping
o  Obviously the case for image, voxels, scene, climate, audio and video datasets
o Side note: extensions also exist for e.g. graphs [GeneralizediNRs]

e Inthe end, a data point is encoded within the weights of a neural network
o How to store those weights efficiently?

— Previous works propose e.g. quantizing the weights
o Data-compression becomes model-compression



Using implicit neural representations for compression

e Reminders:
o AnINRisafunction f(;80): C =» Y " ,
o Can be optimized using the mean-squared error: min > [|f(c;;0) — i,
: . =1
o Bad idea to do separately per datapoint
O

We instead use data-item specific parameters qbi that are used to specialize a shared INR f(-;8)

that captures structure across the dataset. @ Is typically much larger than the ¢i
e How to condition/specialize the fon the ¢?
o  Commonly: layer-wise modulations, i.e. q')" = [s(l),...,s(L)]
o -1 h(W(l)c(l__l) + b® + S(l))
e Reducing the size of ¢' further: Two common options
o Predictthe s = [s(l), e, S(L)] from qbiusing shared weights, i.e. s= W ¢+ b [Functal

m But: hard to train, so far limited to linear mappings — lack of representational capacity
o Prune dimensions in ¢i through sparsity MSCN] Sparse Adaptation

7Y N
m But: requires approximate inference, o @ ( ”N)
introduces additional complexity&hyperparameters | ()\ <




Improving implicit neural representations for compression

e INR-based compression can be improved with a two-fold approach:

(i) Improved conditioning : Try to achieve high signal reconstruction pre-quantization
(ii) Improved compression: Better quantization techniques

e These are orthogonal algorithmic considerations

o (i) increases the upper-bound of performance we can hope to achieve after quantisation
O (i) reduces the gap between that upper-bound and the actual final performance

e Improved conditioning:
o Recent approaches use either sparsity or latent coding for small representations
o They propose a middle ground
m Learns more efficiently, and also
m Provides better reconstructions at equal capacity

e Improved compression:

o Introduce a learned compressor
o Itis trained on the latent representations of the training dataset items
o Can then be applied on unseen latent representation to compress them



Improved conditioning:
INR specialisation through subnetwork selection

e Combine both ideas of sparsity and parametric predictions

o Sparsity, but without hard gating. This alleviates the need for approximate inference
o Parametric predictions can concentrate capacity on non-sparse entries of s

e Propose a non-linear prediction network that maps a ¢’ to one G, per layer
e G is alow-rank soft gating mask, same shape as weights of layer |
e One layer now applies the following function:
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Improved conditioning:
INR specialisation through subnetwork selection

e D sin(we(GY, @ WO =1 4 pBYy)

low

low

G = c(UHVOT) ‘U(”,V(” e R™*¢ withd < m

e Similar to previous techniques, U® v are not directly the entries of @'
e Instead, they are the output of a deep residual network with input ¢’
— Its parameters are part of 6
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v
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(a) Non-linear projection from ¢ to Gg?w sub-network gates.



Improved conditioning:
INR specialisation through subnetwork selection

The whole thing is optimized using model-agnostic Meta Learning MAML]

How to compress a new (unseen) test datapoint? - :éll%(cd,-e)%)vgjll:

— Compute its representation as ¢ = ¢y — aV g, L1 (0, o, x) (inner loop)
Key idea of MAML.: backpropagate through this optimisation process

— Thereby we learn an initialization ¢o and the global parameters @

We thus optimize 1n Exyx) [EINR(O, b0 — aVg, L (6, ¢0’X)vx)] (outer loop)
Additionally, they also meta-learn the step-size a, as in Meta-SGDMetaSGD]

Drawbacks: requires a lot of memory (due to 2nd order gradients)

o Thus they need to use patches for large data. E.g. they only compress 32x32 blocks of pixels
o There are 1st order methods, but previous work found they severely hinder performance



Improved compression:
Variational compression of modulations

e They adapt the method in “End-to-end optimized image compression” [End2End]

o That method was devised for image data, does not make use of INRs
o Learns to encode images as a code with low rate and good reconstructions after quantization
o Basically, it's a variational autoencoder under a specific generative and inference model

e But.. we want model-agnosticity!

o The authors apply this same method, not to learn to compress inputs, but the modulations qbi

o The results are quantised discrete codes that can be stored by e.g. Huffmann coding
e The optimized compression loss is a weighted sum of rate and distortion
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C Guenhy
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o NOte that we Can Set Edistortlon = EMSE(f( ) ,gs(Z, 71'3)), y)
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Experimental results
Effectiveness of improved conditioning



Experiments: Effectiveness of advanced conditioning

Dataset Model Performance @ dim(¢) | :
64 128 256 512 1024 [ESNE = MSEl o
ERAS (4x) | Functa | 432 437 438 440 44.1 | o 00508
MSCN | 44.6 457 460 466 469 | | R
VC-INR | 45.0 462 47.6 49.0 50.0 | o T
CelebA-HQ | Functa | 21.6 23.5 256 28.0 30.7
MSCN | 218 238 257 281 309 M ‘[/ > LD S /U )
VC-INR | 220 239 260 283 308 Lehc: | R
SRN Cars Functa | 224 23.0 231 232 23.1 _
MSCN | 228 240 243 245 2438 -0 - Kogw (USE)
VC-INR | 239 240 243 252 255
ShapeNeth Functa 09.30 99.40 99.44 99.50 99.55 o \/ J/ '
MSCN | 99.43 99.50 ¢9.56 99.63 99.69 M(\ c+ VOX ‘ (U\Cy
VC-INR | 99.54 99.61 99.64 09.70 o9.71

Model: 15 layers of 512 neurons each
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Experiments: Effectiveness of advanced conditioning

e Is the usage of a non-linear mapping from ¢’ to the modulations useful?

Test PSNR

—— Functa
| —— VC-INR (linear)
—— VC-INR (non-linear)

25000 50000 75000 100000 125000 150000
Training steps

(a) Learning curves
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Experiments: Effectiveness of advanced conditioning

e Does the mask G,y condition the shared INR on image statistics?

(c) Mask clustering on CelebA-HQ
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Experimental results
Effectiveness of improved compression

15



Experiments: Data compression across modalities: Images

Dashed line = modality-specific, (n) = neural compression
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Experiments: Data compression across modalities: Manifold
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Experiments: Data compression across modalities: Audio

| | - (LibriSpeech)
Dashed line = modality-specific
—8— VC-INR (ours) —eo— COIN++ -=- MP3 (s)
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Experiments: Data compression across modalities: Video

Dashed line = modality-specific (UCF'1 01 )
—8— VC-INR (ours) -=- H.264/AVC (s) -=#- H.265/HEVC (s)
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Conclusion

The authors introduce VC-INR, a modality-agnostic neural compression technique

They make modality-agnosticity a key guiding principle

They propose algorithmic improvements across both conditioning and compression

For improving conditioning, they combine ideas from latent modulation and sparsity

For improving compression, they apply a previous neural compression method to the modulations
They sometimes even outperform modality-specific codecs such as JPEG and MP3
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Thank you for listening :-)
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Algorithm 1 INR Meta-training stage

Data: Dataset {x’,y*} ¥,

Initialise shared network @ and latent modulation initialisa-
tion ¢y.

while not converged do
Sample batch of data B = {x7,y7}/2,
// Adaptation loop (O in Figure 1lc)

for j « 1to Bdo

// For 1 adaptation step

qu — Po — av¢0£MSE(f(Xj7 0, f/)())ayj)

// Update using adapted latent modulation

¢0 — ¢0 - BE[V¢0£MSE(f(xj7 03 ¢J)7yj)]

// Remaining INR parameters

0 < 0 — BE[VoLuse(f(x7,0,07),y9)]

Result: Dataset of latent modulations {¢*} Y ,, 6
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Algorithm 2 Quantisation training stage

Data: Dataset of latent modulations {¢*}YY ,, 8, \
8 while not converged do
9 Initialise parameters 7, 7rs.
Sample batch of data B = {¢’,x7,y7 } 7.
for ) < 1to B do
10 Z < ga(@;Ta)

// Rounding at inference to obtain 2’

11 z =zl +e~U(—3,3)

// Compute entropy model pz and rate
12 Care = — 1085 [ps (2))

¢ gs(Z; ) N
Etjilstortlon ‘CMSE(f(xj 0,¢),y)
13 Ty Ty — BE[V 5, (£ rate i) )\gdlstortlon)]

s A s — 5E[V—,‘-S( rate + )‘gdlstortlon)]




COIN++

Modulations: sin(wo(Wh + b + 3))

o Uses latent modulation with a linear transform
Also meta-learns with MAML
No compression of the latent modulation vector
For quantisation, simply uses a uniform quantisation
Then also applies entropy coding to store losslessly
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